Circle Theorems - Alternate Segments

# Circle Theorems - Alternate Segments

GCSE(H),

The alternate angle is the angle made in the other sector from a chord. In the example below, the alternate angle to ∠ACD (shown as x) is the angle ∠ABC - it is on the other side of the chord.

DC is a tangent to the circle. A triangle ∠ABC has points A, B and C on the circumference of a circle with centre O.

Let the angle ∠ACD be x. Add a triangle AOC with the angle ∠OCA as y.

A tangent is at right angles to the radius; therefore x + y = 90º

Bisect the triangle ∠AOC from the centre: the triangle is an Isosceles triangle and the bisecting line meets the chord at a right angle. Let the bisected angle have a value of z.

Angles in a triangle add to 180º; z + y + 90 = 180, or z + y = 90º.

Match the two equations: x + y = z + y therefore x = z

The angle at the centre is twice the value of the angle at the circumference when subtended by the same arc: ∠AOC = 2z therefore ∠ABC = z = x.

An angle between the tangent and the chord is therefore equal to the angle in the alternate segment. ## Examples

1. ED is a tangent to a circle, touching at point A. Triangle ABC is a triangle proscribed within the circle. Angle ∠DAC has a value of 59º. What is the value of angle ∠ABC?  