Expanding more than two binomials is carried out by multiplying the binomials in steps. Multiply one binomial at a time against the expression.
Because you will be multiplying a binomial against a quadratic, it is easiest to use a table.
Expand `(x + 3)(x -2)(x + 7)`
First multiply `(x+3)` and `(x-2)`
`x` | `+3` | ||
`x` | `x^2` | `3x` | |
`-2` | `-2x` | `-6` | `=(x^2 + x - 6)` |
Next multiply the answer `(x^2 + x - 6)` by `(x + 7)`
`x` | `+7` | ||
`x^2` | `x^3` | `7x^2` | |
`+x` | `x^2` | `+7x` | |
`-6` | `-6x` | `-42` | `=x^3 + 8x^2 + x - 42` |
Answer: `x^3 + 8x^2 + x - 42`
Expand `(x^2 + 2x - 4)(x^2 -2x + 4)`
Set it up as a table::
`x^2` | `2x` | `-4` | ||
`x^2` | `x^4` | `+2x^3` | `-4x^2` | |
`-2x` | `-2x^3` | `-4x^2` | `8x` | |
`+4` | `+4x^2` | `8x` | `-16` | `= x^4 -4x^2 +16x -16` |
Answer: `x^4 - 4x^2 + 16x - 16`
See also Expanding Binomials